Abstract

SummaryWe applied the ecological niche/habitat modelling approach to predict the potential winter distribution of the endangered Black-capped VireoVireo atricapilla. We used historical and current field records along with climatic and topographic variables to generate three different models (Biomapper, Maxent, and GARP). Using field data on species occurrence, a model was selected based on the accuracy of assessment results. A final model was obtained by eliminating those areas mapped as known unsuitable habitat, using high resolution land use/land cover data. The GARP model obtained the best accuracy values. It showed the winter distribution of the Black-capped Vireo to cover an area in western Mexico of about 141,000 km2that runs along the Pacific coast from southern Sonora (Río Yaqui, Alvaro Obregón Dam) to the southern state of Oaxaca (Salina Cruz on the Pacific coast and Matias Romero, and inland). One third of the proposed model’s area was located at elevations of 0–500 m, while 83% occurred at elevations < 1,250 m; however, a significant area (17%) consists of sites > 1,250 m in elevation. For the most part, the distribution model proposed closely followed the tropical dry forest boundaries and clearly avoided temperate areas at higher elevations. This situation seems to be critical for the species, since the dry forest is one of most endangered Neotropical ecosystems, both nationally and internationally. Furthermore, the array of areas under protection regimes included only about 7.1% of the predicted wintering area. However, this figure could be misleading when it is considered that some protected areas are just “paper reserves” without significant conservation programmes developedin situ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.