Abstract

A two-dimensional mathematical model of a monolithic catalyst support, based on a zonal approach, is developed to describe the heat interactions between the monolith channels. The development of such model is a step towards its incorporation in the complete thermal systems model of the propulsion powerplant. The model conservation equations are discretized using the finite volume method and a numerical solution method is presented. The model is validated using the experimental data available in literature for two cases: a steady state, non-reacting, non-adiabatic two-dimensional case and a transient (warm-up), one-dimensional reacting case. Comparison with literature experimental data showed good agreement. The zonal approach where multi-channel zones are used is demonstrated to provide robust and efficient simulation with significantly reduced simulation times compared with a single channel per zone grid, without introducing large errors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.