Abstract

BackgroundTuberculosis remains the leading cause of death in South Africa. A number of potential new TB vaccine candidates have been identified and are currently in clinical trials. One such candidate is MVA85A. This study aimed to estimate the cost-effectiveness of adding the MVA85A vaccine as a booster to the BCG vaccine in children from the perspective of the South African government.MethodsThe cost-effectiveness was assessed by employing Decision Analytic Modelling, through the use of a Markov model. The model compared the existing strategy of BCG vaccination to a new strategy in which infants receive BCG and a booster vaccine, MVA85A, at 4 months of age. The costs and outcomes of the two strategies are estimated through modelling the vaccination of a hypothetical cohort of newborns and following them from birth through to 10 years of age, employing 6-monthly cycles.ResultsThe results of the cost-effectiveness analysis indicate that the MVA85A strategy is both more costly and more effective – there are fewer TB cases and deaths from TB than BCG alone. The South African government would need to spend an additional USD 1,105 for every additional TB case averted and USD 284,017 for every additional TB death averted. The threshold analysis shows that, if the efficacy of the MVA85A vaccine was 41.3% (instead of the current efficacy of 17.3%), the two strategies would have the same cost but more cases of TB and more deaths from TB would be prevented by adding the MVA85A vaccine to the BCG vaccine. In this case, the government chould consider the MVA85A strategy.ConclusionsAt the current level of efficacy, the MVA85A vaccine is neither effective nor cost-effective and, therefore, not a good use of limited resources. Nevertheless, this study contributes to developing a standardized Markov model, which could be used, in the future, to estimate the potential cost-effectiveness of new TB vaccines compared to the BCG vaccine, in children between the ages of 0–10 years. It also provides an indicative threshold of vaccine efficacy, which could guide future development.

Highlights

  • Tuberculosis remains the leading cause of death in South Africa

  • Both the discounted and undiscounted results show that adding the Modified Vaccinia Ankara 85A (MVA85A) vaccine to the Bacille Calmette-Guérin (BCG)

  • The results showed that the outcomes were robust; being most sensitive to the Annual Risk of Infection (ARI), MVA85A vaccine efficacy, and the MVA85A vaccine price

Read more

Summary

Introduction

Tuberculosis remains the leading cause of death in South Africa. It is only recently that policy makers and advocates have begun raising the issues around addressing childhood diseases, including child-friendly medicine formulations and diagnostics and ensuring that data relevant to children are available. For this reason, the true extent of the global burden of TB disease in children is not known [3,4,5,6], but it is estimated to be around 490,000 cases and 64,000 deaths, annually [2]. Once infected, children become the reservoir for future TB disease [5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.