Abstract

What type of connectivity structure are we seeing in protein-protein interaction networks? A number of random graph models have been mooted. After fitting model parameters to real data, the models can be judged by their success in reproducing key network properties. Here, we propose a very simple random graph model that inserts a connection according to the degree, or 'stickiness', of the two proteins involved. This model can be regarded as a testable distillation of more sophisticated versions that attempt to account for the presence of interaction surfaces or binding domains. By computing a range of network similarity measures, including relative graphlet frequency distance, we find that our model outperforms other random graph classes. In particular, we show that given the underlying degree information, fitting a stickiness model produces better results than simply choosing a degree-matching graph uniformly at random. Therefore, the results lend support to the basic modelling methodology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.