Abstract

An integrated methodology for the simulation of practical combustion systems and NOx prediction is presented. It is based on 3D CFD simulation coupled to a postprocessor which yields reactor networks, extracted from 3D fields, as ‘equivalent’ simplified flow models for which it is possible to use a detailed reaction kinetics. The study of two glass melting furnaces is presented to illustrate the methodology. The furnaces were experimentally characterised, then CFD simulations were performed, setting the suitable boundary conditions for the radiative heat exchange and the sub-model for the chemistry. From each CFD simulation, a chemical reactor network was extracted to perform the computation of the secondary product combustion species by means of a complex kinetics mechanism. An evaluation of the models was given comparing the measurements with the temperature of the CFD field and the NOx prediction. Finally, an estimate of the effect of some NOx reducing techniques was given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.