Abstract
A deterministic, dynamic model was developed, to enable predictions of phosphorus (P) digested, retained and excreted for different pig genotypes and under different dietary conditions. Before confidence can be placed on the predictions of the model, its evaluation was required. A sensitivity analysis of model predictions to ±20% changes in the model parameters was undertaken using a basal UK industry standard diet and a pig genotype characterized by British Society Animal Science as being of ‘intermediate growth’. Model outputs were most sensitive to the values of the efficiency of digestible P utilization for growth and the non-phytate P absorption coefficient from the small intestine into the bloodstream; all other model parameters influenced model outputs by <10%, with the majority of the parameters influencing outputs by <5%. Independent data sets of published experiments were used to evaluate model performance based on graphical comparisons and statistical analysis. The literature studies were selected on the basis of the following criteria: they were within the BW range of 20 to 120 kg, pigs grew in a thermo-neutral environment; and they provided information on P intake, retention and excretion. In general, the model predicted satisfactorily the quantitative pig responses, in terms of P digested, retained and excreted, to variation in dietary inorganic P supply, Ca and phytase supplementation. The model performed well with ‘conventional’, European feed ingredients and poorly with ‘less conventional’ ones, such as dried distillers grains with solubles and canola meal. Explanations for these inconsistencies in the predictions are offered in the paper and they are expected to lead to further model development and improvement. The latter would include the characterization of the origin of phytate in pig diets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.