Abstract

SummaryThe pH buffering and aluminium solubility characteristics of acid soil are important in determining the soil's response to changes in precipitation acidity. The chemistry of soil organic matter (humic substances) plays a key role in both processes, yet is complex and still poorly understood. Nevertheless, models of humic substance chemistry have been developed, one of which is WHAM–S, which contains a model (Model V) of proton and metal binding at discrete sites on humic substances and considers electrostatic effects on the binding strength. Here we have tested the ability of WHAM–S to model solution pH and Al using batch titration studies on organic and mineral soil horizons from forested sites in Norway, Germany and Spain, with ambient pH values from 3.73 to 5.73. We optimized the model predictions by adjusting the amounts of soil aluminium and humic substances within defined limits, taking the contents of copper chloride‐extractable Al and the base‐extractable organic matter as starting values. The model simulated both pH and dissolved Al well with optimized amounts of aluminium and humic substances within the defined limits (root mean squared error for pH from 0.01 to 0.22, for p[Al]aq (total dissolved Al) from 0.03 to 0.49, five data points). Control of dissolved Al by dissolved organic matter was important particularly at above‐ambient pH. In two mineral horizons we improved the fits by assuming that Al could precipitate as Al(OH)3. The optimized model also gave reasonable predictions of pH and dissolved Al in supernatants obtained by repeated leaching of the soil horizons. The results show that humic substances dominate the control of pH and dissolved Al in most of the horizons studied. Control by Al(OH)3 occurs but is the exception.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.