Abstract

The French space mission MICROSCOPE aims at testing the Equivalence Principle (EP) up to an accuracy of 10−15. The experiment will be carried out on a satellite which is developed and produced within the CNES Myriade series. The measuring accuracy will be achieved by means of two high-precision capacitive differential accelerometers that are built by the French institute ONERA, see Touboul and Rodrigues (Class. Quantum Gravity 18:2487–2498, 2001). At ZARM, which is a member of the science team, the data evaluation process is prepared. Therefore, a comprehensive simulation of the real system including the science signal and all error sources is built for the development and testing of data reduction and data analysis algorithms to extract the EP violation signal. Currently, the ZARM Drag-Free simulator, a tool to support mission modelling, is adapted for the MICROSCOPE mission in order to simulate test mass and satellite dynamics. Models of environmental disturbances like solar radiation pressure are considered, also. Additionally, detailed modelling of the on-board capacitive sensors is done. The actual status of the mission modelling will be presented. Particularly, the modelling of disturbances forces will be discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.