Abstract
Effects of adsorbent heterogeneity on the adsorption of cobalt phthalocyanine dye on activated carbon have been studied. Adsorption experiments were carried out by varying the temperature and adsorbent mass in batch adsorbers and, in addition, the adsorbent particle size and fluid flow rate in a continuous stirred tank reactor (CSTR)-type adsorber in order to investigate the equilibrium and the kinetics of adsorption. The Brunauer-Emmett-Teller (BET), Langmuir with uniform distribution (LUD) and Langmuir-Freundlich equations are able to represent the equilibrium data with similar accuracy within the range of measurements. Reasonably large values of the heterogeneity parameter (2.69–2.86) show that the carbon surface is energetically heterogeneous. A mathematical model that describes the adsorption dynamics, including film-, pore- and concentration-dependent surface diffusion on an energetically and structurally heterogeneous adsorbent, is presented here and fitted to the experimental concentration vs. time curves obtained in the continuously stirred tank adsorber. Structural heterogeneity of the carbon, if not accounted for in the kinetic model, can be responsible for the very strong concentration dependence of the surface diffusion coefficient and for the variation in the parameter D o with particle size and adsorber porosity as shown in this work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.