Abstract

Existing analytical solutions available for simulating slurry infiltration do not account for the effect of particle dispersion and blockage at the same time. In view of this, a mathematical model of slurry particle migration in a saturated porous media with the convection–dispersion-deposition effect is established, and a semi-analytical solution of the particle transport problem with time discretization is obtained using an integral transformation. The correctness and rationality of the method are verified by comparing the experimental and theoretical results of the one-dimensional particle transport problem in constant pressure injection and constant velocity injection modes. The results of the method are in good agreement with those obtained from commercial finite element analyses. The spatiotemporal distribution of particle concentration, slurry deposition, soil porosity, pore water pressure, flow velocity in soil column can be easily obtained by the method. The pore water pressure calculated using this method is compared with the measured result during slurry shield drilling stops, demonstrating the potential application of this method in slurry engineering. The parametric analysis indicated that increasing the excavation chamber pressure and slurry concentration can accelerate the pore water pressure dissipation and the mud cake formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.