Abstract
The paper presents a derivation of the governing equations for multi-component convective-diffusive flow in capillaries and porous solids starting from a well-defined model and clear assumptions. The solution for the continuum regime is discussed in detail including a derivation of the diffusion slip boundary condition based on an improved momentum transfer theory. The Stefan–Maxwell species momentum equations are also re-examined and important distinctions made between the local and tube-averaged equations. An equation for the pressure gradient is derived and some examples of binary flows in capillaries are discussed. The theory for free-molecule flow is standard but the equations are recast into a form identical to the continuum equations which suggests an obvious method of interpolation for flow at arbitrary Knudsen number. There are no problems concerning viscous terms which have marred other derivations. The extension to flow in porous bodies is achieved by introducing a porosity–tortuosity factor but, unlike other treatments, this parameter is not absorbed into the gas diffusivities and flow permeability. It can then be eliminated from all but one of the equations and, with appropriate boundary conditions, the flux ratios can be obtained in terms of a mean pore radius only. The porosity–tortuosity parameter simply controls the absolute flux level and is best interpreted as a length scale-factor. The theory is applied with success to the prediction of some experimental data for helium–argon counter-diffusion and it is shown that, contrary to common belief, the mean pore radius is well-defined by flux ratio measurements if these are made with non-zero pressure differences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.