Abstract

The observations of CI 1931 Å emission in the ultraviolet spectra of comets show that a large fraction of carbon atoms in the cometary coma are produced in the metastable 1D excited state. A coupled chemistry-transport model is used to study the chemistry of C( 1D) atom and the mechanisms of production of CI 1931 Å in the near nucleus environment. Dissociation of CO by solar UV photon and photoelectron impact are the dominant mechanisms of the C( 1D) production in the cometary coma. The CI 1931 Å emission is found to be governed dominantly by the density distribution of CO and C( 1D). The model predict height-integrated CI 1931 Å emission intensity of 20 R on comet 46P/Wirtanen, the target of the ROSETTA mission, and intensity averaged over HST FOC field-of-view of 6.7 R. However, the observed intensity could be higher since on comet Halley the model predicted intensity (Bhardwaj, 1999) was about a factor of 5 smaller than that observed by the IUE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.