Abstract
Inverse problem of estimating initial pressure in photoacoustic tomography is ill-posed and thus sensitive to errors in modelling and measurements. In practical experiments, accurate knowledge of the speed of sound of the imaged target is commonly not available, and therefore an approximate speed of sound is used in the computational model. This can result in errors in the solution of the inverse problem that can appear as artefacts in the reconstructed images. In this paper, the inverse problem of photoacoustic tomography is approached in a Bayesian framework. Errors due to uncertainties in the speed of sound are modelled using Bayesian approximation error modelling. Estimation of the initial pressure distribution together with information on the reliability of these estimates are considered. The approach was studied using numerical simulations. The results show that uncertainties in the speed of sound can cause significant errors in the solution of the inverse problem. However, modelling of these uncertainties improves the accuracy of the solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.