Abstract

The Constant Rate of Momentum Change (CRMC) criterion attempts to improve the design of supersonic ejectors, that can be used in heat-powered chillers for industrial or air-conditioning use. Moving from its original formulation, the CRMC design method can be advanced accounting for friction irreversibilities and real gas behaviour, as done in a previous work by our research group. Here we present an upgraded version of this analysis, supported by experimental data from a prototype chiller using R245fa as working fluid. The analysis is extended to other fluids (water, isobutane, 5 HFCs and 3 HFOs) whose performance is calculated on a wide range of heat source/sink temperatures. The existing literature, based generally on ideal gas simulations, suggests that water yields poor results in terms of COP. This paper shows that this result may be argued. Low GWP fluid HFO1233zd also gives good results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.