Abstract

Two methods to treat wave breaking in the framework of the Hamiltonian formulation of free-surface potential flow are presented, tested, and validated. The first is an extension of Kennedy et al. (2000)’s eddy-viscosity approach originally developed for Boussinesq-type wave models. In this approach, an extra term, constructed to conserve the horizontal momentum for waves propagating over a flat bottom, is added in the dynamic free-surface condition. In the second method, a pressure distribution is introduced at the free surface that dissipates wave energy by analogy to a hydraulic jump (Guignard and Grilli, 2001). The modified Hamiltonian systems are implemented using the Hamiltonian Coupled-Mode Theory, in which the velocity potential is represented by a rapidly convergent vertical series expansion. Wave energy dissipation and conservation of horizontal momentum are verified numerically. Comparisons with experimental measurements are presented for the propagation of a breaking dispersive shock wave following a dam break, and then incident regular waves breaking on a mildly sloping beach and over a submerged bar.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.