Abstract

The formation and site preference energies and volume changes of single and pair of defects of ternary alloying elements in γ-TiAl intermetallic compound were studied by the density functional theory. Slight tendency to clusterization of antisite defects has been found. This may lead to disorder in the system. The V and Cr atoms prefer to reside in the Ti sublattice. The formation energy for Cr–Cr, Cr–V and V–V nearest neighbour pairs are in the 1.3–2 eV range. The Al antisite in Ti sublattice requires much less energy than the Ti antisite in Al sublattice. The amorphisation process of TiAl alloy was studied by means of high energy ball milling of Ti and Al elemental powders, which produces amorphous structure after 40 h. The amorphous states were studied by the DFT calculations of many random atomic configurations and the results were compared with the NiAl compound. Possible explanation for the amorphisation of the TiAl compound is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.