Abstract

ABSTRACT The present study investigated the cefixime removal from aqueous solution using TiO2 and ZnO photocatalyst immobilised at polyurethane (PU) as well-asoptimized the effective parameters using response surface methodology (RSM). In this study, firstly, the polyurethane was synthesised and then photocatalysts were incorporated into the polyurethane. The experimental design was used to first determine the concentration of effective variables (pH, initial cefixime, catalyst dosage, and reaction time) and then optimize the independent variables based on the response (cefixime removal efficiency). The characteristics of photocatalyst were determined through scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The optimum variables for cefixime removal efficiency were pH of 4.80, catalyst dosage of 2.60 g/m2; initial cefixime concentration of 25.90 mg/L, and reaction time of 85 min for TiO2/ultraviolet (UV)/polyurethane (TiO2/UV/PU) process. In addition, the optimum conditions for the ZnO/ultraviolet/polyurethane (ZnO/UV/PU) process for pH of the solution, the dosage of ZnO, CFIX concentration, and reaction time were found to be6.70, 2.40 g/m2, 25 mg/L, and 89 min, respectively. The results of the kinetic model showed that experimental values were best fitted with the first-order model. Also, the results of a scavenger study represented that degradation of antibiotics and the generation of free radicals of hydroxide play an important role in the cefixime removal. Therefore, it is demonstrated that the CFIX antibiotic should significantly be removed from the aqueous solution using a photocatalyst/ultraviolet/polyurethane process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.