Abstract

Horses in heavy training in preparation for racing and competition have increased metabolic demands to support the more intensive levels of exercise and recovery. However, little is known at the metabolic level about amino acid turnover and the specific alterations of demand caused by high intensity exercise. During exercise, certain amino acids are required in greater quantities due to disproportionate losses via excretory systems and usage in biosynthetic pathways. This investigation has built a theoretical computer model in an attempt to bring together the published rates of protein intake and utilisation to try to understand how some amino acids might be in higher demand than others. The model indicated that after evaluation of the daily amino acid turnover, glutamine/glutamic acid (Glx), serine and ornithine were in negative nitrogen balance which identified these amino acids as critical limiting factors for anabolism. Adjustment of the modelling conditions to cater for high intensity training indicated that an additional demand was placed on eight amino acids, including GLx, valine, lysine, histidine and phenylalanine which could thus become limiting under these conditions. The modelling results indicated that an amino acid supplement with the correct amino acids to match demand could theoretically be beneficial to a 500Kg horse in quantities of 20-80g/day. These results open new avenues of research for specifically tailoring amino acid supplementation to meet demands for sports horses in heavy training and improving general well-being, especially in hotter climates.

Highlights

  • Assessment of the nitrogen balances of individual amino acids to establish whether they may be in deficit or in positive balance is critical to determining whether supplementation of specific amino acids may provide physiological benefits in horses

  • It was apparent from this output that the total daily protein synthesis of 1,978g was three times the protein synthesis generated from protein intake (645g) as suggested by MartinRosset [9,44]

  • The average amino acid composition of the urine has been summarized in Table 4, where the results have been sorted on the basis of the most abundant to the least abundant components together with the relative percentage compositions

Read more

Summary

Introduction

Assessment of the nitrogen balances of individual amino acids to establish whether they may be in deficit or in positive balance is critical to determining whether supplementation of specific amino acids may provide physiological benefits in horses. This approach has been successfully developed in the human context where it was found that histidine, serine, glycine and ornithine were used at disproportionately faster rates than the other amino acids during. Modelling of amino acid turnover in the horse during training and racing

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.