Abstract

This study uses a self-developed anti-corrosion pill particle as the research object and develops the pill particle population modelling method in order to optimize the anti-corrosion process of oil and gas wellbore casing annuli. The shape of the pill particle is similar to a cylinder, according to the test and analysis of geometrical characteristics, and can be simplified into three types based on height, namely pill particles A (5.4 mm), B (5.8 mm), and C (6.2 mm). The multi-sphere approach is then used to create models of three different types of pill particles with varying degrees of precision. The feasibility and effectiveness of the modelling method for pill particle populations are proven by comparing the simulation results of the bulk density test and the angle of repose test. The results show that the 12-sphere models of pill particles A, B, and C are accurate representations of genuine pill particle morphologies and are adequate for simulating particle mechanics and flow processes. The applicability and practical use of the modelling method are then demonstrated using an example of a self-designed pill particle discharging mechanism. The results show that the modelling method can accurately simulate the pill discharging process and provide an accurate simulation model and theoretical basis for the optimization of the structural parameters, dimension parameters, and operating parameters of the discharging device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.