Abstract

We present a modelling study regarding the impact of metastructures on the quantum efficiency (QE) of long-wavelength infrared (LWIR; 8–12 µm) InAs/GaSb type-II superlattice (T2SL) detectors. The approach is based on finite-element-method modeling of the electric-field distribution in the detector volume and deducing the QE. The optimization procedure consists of identification of a best-adaptive absorber thickness for a topside gold-coated photodiode, iterative optimization of the metastructure parameters, and adoption of a suitable anti-reflection coating. The modeling results indicate the potential to increase the average integrated QE for a 2.1-µm thick absorber layer from 35% to 73%, which corresponds to an improvement of 108%. For a detector with a thinner absorber of 0.9 µm, the average integrated QE improves from 21% to 59%, which corresponds to an increase of 180%. With this case study, we demonstrate the overall potential of employing metastructures for QE enhancement in LWIR T2SL detectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.