Abstract

Ironmaking blast furnace is a counter-, co-, cross-current moving bed reactor, where solid particles are charged at the furnace top forming a downward moving bed while gas are introduced at the lower part of furnace and travels upward through the solid bed of varying porosity, reducing solid ore to liquid iron at the cohesive zone. These three phases interact intensely. In this paper, a three-dimensional mathematical model is developed. The model describes the motion of solid and gas, based on continuum approach, and implements the so-called force balance model for the liquid flow. The model is applied to a blast furnace, where raceway cavity is considered explicitly. The results demonstrate and characterize the key multiphase flow patterns of solid-gas-liquid at different regions inside the blast furnace, in particular solid flow and associated thermochemical behaviours of solid particles. This model offers a costeffective tool to understand and optimize blast furnace operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.