Abstract

A network model at both the population and individual levels, which simulates both between-patch and within-patch dynamics, is proposed. We investigated the effects of dispersal networks and distribution of local dynamics on the outcome of an epidemic at the population level. Numerical studies show that disease control on random networks may be easier than on small-world networks, depending on the initial distribution of the local dynamics. Spatially separating instead of gathering patches where disease locally persists is beneficial to global disease control if dispersal networks are a type of small-world networks. Dispersal networks with higher degree lead to a higher mean value of R0. Furthermore, irregularity of network and randomization are beneficial to disease stabilization and greatly affect the resulting global dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.