Abstract

In this paper, the impact damage of composite laminates in the form of intra- and inter-laminar cracking was modelled using stress-based criteria for damage initiation, and fracture mechanics techniques to capture its evolution. The nonlinear shear behaviour of the composite was described by the Soutis shear stress–strain semi-empirical formula. The finite element (FE) method was employed to simulate the behaviour of the composite under low velocity impact. Interface cohesive elements were inserted between plies with appropriate mixed-mode damage laws to model delamination. The damage model was implemented in the FE code (Abaqus/Explicit) by a user-defined material subroutine (VUMAT). Numerical results in general gave a good agreement when compared to experimentally obtained curves of impact force and absorbed energy versus time. The various damage mechanisms introduced during the impact event were observed by non-destructive technique (NDT) X-ray radiography and were successfully captured numerically by the proposed damage evolution model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.