Abstract

AbstractFlowing snow is a cohesive granular material. Snow temperature and moisture content control the strength of the cohesive bonding between granules and therefore the outcome of granular interactions. Strong, cohesive interactions reduce the free mechanical energy in the avalanche core and therefore play a significant role in defining the avalanche flow regime. We introduce cohesion into avalanche dynamics model calculations by (1) treating cohesion as an additional internal binding energy that must be overcome to expand the avalanche flow volume, (2) modifying the Coulomb stress function to account for the increase in shear because of cohesive interactions and (3) increasing the activation energy to control the onset of avalanche fluidization. The modified shear stress function is based on force measurements in chute experiments with flowing snow. Example calculations are performed on ideal and real terrain to demonstrate how snow cohesion modifies avalanche flow and runout behaviour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.