Abstract
This study proposes an analytical model and an effective scheme for the periodic broadcast on the control channel in vehicular ad hoc networks (VANETs). An improved Markov model for analysing the performance of the periodic broadcast in VANETs is established. Compared with the traditional two-dimensional Markov chain models, the improvement of our proposed model is achieved by the considerations of the unsaturated traffic conditions with the deterministic message generation at each node, modelled by a discrete-time D/M/1 queue and the control mechanism of freezing the backoff-time counter. In adapting to the change of the vehicle densities, the authors propose to use the dynamic contention window (DCW), instead of the fixed contention window (CW), for the broadcast in the IEEE 802.11p medium access control in VANETs. For a certain vehicle density, a best CW size is chosen to achieve a more effective broadcast. Simulation results show that the proposed DCW-based broadcast performs better than the traditional fixed-CW-size broadcast in terms of the packet collision probability. The results also validate our proposed Markov model and its performance improvement than the scheme without the consideration of freezing the backoff-time counter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.