Abstract
This study aimed to model and optimize pyrene removal from the soil contaminated by sorghum bicolor plant using Response Surface Methodology (RSM) and Artificial Neural Network (ANN) with Genetic Algorithm (GA) approach. Here, the effects of indole acetic acid (IAA) and pseudomonas aeruginosa bacteria on increasing pyrene removal efficiency by phytoremediation process was studied. The experimental design was done using the Box-Behnken Design (BBD) technique. In the RSM model, the non-linear second-order model was in good agreement with the laboratory results. A two-layer Feed-Forward Back-Propagation Neural Network (FFBPNN) model was designed. Various training algorithms were evaluated and the Levenberg Marquardt (LM) algorithm was selected as the best one. Existence of eight neurons in the hidden layer leads to the highest R and lowest MSE and MAE. The results of the GA determined the optimum performance conditions. The results showed that using indole acetic acid and pseudomonas bacteria increased the efficiency of the sorghum plant in removing pyrene from the soil. The comparison obviously indicated that the prediction capability of the ANN model was much better than that of the RSM model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.