Abstract

A resonant microcantilever beam gas sensor was designed and fabricated in Carnegie Mellon University using complementary metal oxide semiconductor (CMU-CMOS) technology. The cantilever beam modified with a suitable sorbent coating was demonstrated as a chemical transducer for monitoring hazardous vapours and gases at trace concentrations. The design of the cantilever beam included interdigitated fingers to allow electrostatic actuation of the device and a piezoresistive Wheatstone bridge design to read out the deflection signal. The cantilever beam resonant frequency was modelled using the Euler-Bernoulli beam theory and ANSYS. The beam resonant frequency was measured with an optical laser Doppler vibrometer. Good agreement was obtained among the measured, simulated, and modelled resonant frequencies. A custom sorbent polymer layer was coated on the surface of the cantilever beam to allow its operation as a gas-sensing device. The frequency response as a function of exposure to the nerve agent simulant dimethylmethylphosphonate (DMMP) at different concentrations was measured, which allowed a demonstrated detection at a concentration of 20 ppb or 0.1 mg/m3. The air-polymer partition coefficient K, for DMMP was estimated and compared favourably with the known values for related polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.