Abstract

Studying of gas deflagration is important for a safety purpose in gas industry. A modelling approach based on large eddy simulation (LES) technique for modelling turbulent flow combined with the species mass fraction equations for modelling combustion is used. Different flame acceleration mechanisms, hydrodynamic & thermo-diffusive instabilities, turbulence, and their interaction in addition to flame quenching model are used to model chemical reaction rate. An algebraic model for flame-generated turbulence is incorporated. The model is tested against large scale open atmosphere hydrogen-air experiment. The flame propagation radius and the overpressures are qualitatively compared well with experiment and the state-of-the-art simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.