Abstract

This study focuses on developing a comprehensive model of a rigid overhead system, which includes essential components such as the suspension structure, positioning clamp, and expansion joint. The modelling approach utilizes finite element theory and beam elements to accurately represent the displacement, stiffness, and mass characteristics of the system. The models also incorporate the suspension structure and positioning line clamp, which play crucial roles in suspending and positioning the busbar. Various suspension structures and positioning line clamps are evaluated based on their dynamic characteristics. The expansion joint, responsible for connecting different anchor sections of the rigid overhead system, undergoes a detailed analysis. Different assembly scenarios, including ideal and deflected assembly conditions, are considered. To simulate the dynamic behaviour of the expansion joint, additional beams are introduced into the system model. The primary finding of the analysis is that the maximum stresses observed in the constructed expansion joint model, under different temperature conditions and normal/deflected assembly conditions, remain within the permissible stress limits of the material. This indicates a high level of safety. However, certain areas exhibit stress concentration, particularly at the sliding block B and sliding rod A positions. This stress concentration is primarily attributed to the unique assembly form of the expansion joint. To improve stress distribution and enhance service reliability, the analysis suggests optimizing the installation deflection angle and geometric design of the expansion joint. Furthermore, the concentrated mass at the expansion joint significantly impacts the current collection quality of the pantograph-overhead system. Mitigating this negative impact can be achieved by reducing the mass of the expansion joint.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.