Abstract

It has long been recognized that the evolution of marine storms may be strongly affected by the flux transfer processes over the ocean. High winds in a storm can generate large amounts of spray, which can modify the transfer of momentum, heat, and moisture across the air-sea interface. However, the role of sea spray and air-sea processes in western Pacific typhoons has remained elusive. In this study, the impact of sea spray on air-sea fluxes and the evolution of a typhoon over the western Pacific is investigated using a coupled atmosphere-sea-spray modeling system. Through the case study of the recent Typhoon Fengshen from 2002, we found that: (1) Sea spray can cause a significant latent heat flux increase of up to 40% of the interfacial fluxes in the typhoon; (2) Taking into account the effects of sea spray, the intensity of the modeled typhoon can be increased by 30% in the 10-m wind speed, which may greatly improve estimates of storm maximum intensity and, to some extent, improve the simulations of overall storm structure in the atmospheric model; (3) The effects of sea spray are mainly focused over the high wind regions around the storm center and are mainly felt in the lower part of the troposphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.