Abstract

This paper presents a multi-input analogue-to-digital functional converter manufactured using switched capacitors. A new method of multifunctional analogue-to-digital processing was tested, which allowed the number of inputs to be increased to 10 without compromising accuracy. An algorithm was developed, and the converter’s operation was modelled based on this method. It was found that error values are not significantly affected by the number of input voltages. The value of the lowest input voltage has a decisive influence on the conversion time. The examined multi-input analogue-to-digital functional converter performs multiplication, division, exponentiation, and root extraction operations. The exponent of the power and the degree of the root corresponds to the number of inputs of the converter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.