Abstract

In the normal low-speed engine operation, elastohydrodynamic lubrication (EHL) of piston skirts and lubricant rheology reduce friction and prevent wear. In a few initial start up cycles, a very low engine speed and absence of EHL cause adhesive wear. This study models hydrodynamic and EHL of piston skirts in the initial very low cold engine start up speed by using a high viscosity lubricant. The 2-D Reynolds equation is solved and inverse solution technique is used to calculate the pressures and film thickness profiles in the hydrodynamic and EHL regimes, respectively. The work is extended to investigate the effects of three very low initial engine start up speeds on the transverse eccentricities of piston skirts, film thickness profiles and pressure fields in the hydrodynamic and EHL regimes. Despite using a viscous lubricant, thin EHL film profiles are generated at low start up speeds. This study suggests very low speed optimization in the cold initial engine start up conditions to prevent piston wear under isothermal conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.