Abstract

Effects of electric fields on biological cells have been extensively studied but primarily in the low and high frequency regimes. Low frequency AC fields have been investigated for applications to nerve and muscle stimulation or to examine possible environmental effects of 60 Hz excitation. High frequency fields have been studied to understand tissue heating and tumor ablation. Biological effects at intermediate frequencies (in the 100-500 kHz regime) have only recently been discovered and are now being used clinically to disrupt cell division, primarily for the treatment of recurrent glioblastoma multiforme. In this study, we develop a computational framework to investigate the mechanisms of action of these Tumor Treating Fields (TTFields) and to understand in vitro findings observed in cell culture. Using Finite Element Method models of isolated cells we show that the intermediate frequency range is unique because it constitutes a transition region in which the intracellular electric field, shielded at low frequencies, increases significantly. We also show that the threshold at which this increase occurs depends on the dielectric properties of the cell membrane. Furthermore, our models of different stages of the cell cycle and of the morphological changes associated with cytokinesis show that peak dielectrophoretic forces develop within dividing cells exposed to TTFields. These findings are in agreement with in vitro observations, and enhance our understanding of how TTFields disrupt cellular function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.