Abstract

The Boomerang Nebula is a bright radio and X-ray pulsar wind nebula (PWN) powered by an energetic pulsar, PSR J2229+6114. It is spatially coincident with one of the brightest ultrahigh-energy (UHE; ≥100 TeV) gamma-ray sources, LHAASO J2226+6057. While X-ray observations have provided radial profiles for both the intensity and photon index of the nebula, previous theoretical studies have not reached an agreement on their physical interpretation, which also leads to different anticipation of the UHE emission from the nebula. In this work, we model its X-ray emission with a dynamical evolution model of PWN, considering both convective and diffusive transport of electrons. On the premise of fitting the X-ray intensity and photon index profiles, we find that the magnetic field within the Boomerang Nebula is weak (∼10 μG in the core region and diminishing to 1 μG at the periphery), which therefore implies a significant contribution to the UHE gamma-ray emission by the inverse Compton (IC) radiation of injected electron/positron pairs. Depending on the particle transport mechanism, the UHE gamma-ray flux contributed by the Boomerang Nebula via the IC radiation may constitute about 10%–50% of the flux of LHAASO J2226+6057 at 100 TeV and up to 30% at 500 TeV. Finally, we compare our results with previous studies and discuss potential hadronic UHE emission from the PWN. In our modeling, most of the spindown luminosity of the pulsar may be transformed into thermal particles or relativistic protons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.