Abstract

The diffuse attenuation coefficient (Kd) is critical to understand the vertical distribution of underwater downwelling irradiance (Ed). Theoretically Ed is composed of the direct solar beam and the diffuse sky irradiance. Applying the statistical results from Hydrolight radiative transfer simulations, Kd is expressed into a mathematical equation (named as PZ06) integrated from the contribution of direct solar beam and diffuse sky irradiance with the knowledge of sky and water conditions. The percent root mean square errors (RMSE) for the vertical distribution of Ed(z) under various sky and water conditions between PZ06 and Hydrolight results are typically less than 4%. Field observations from the southern Middle Atlantic Bight (SMAB) and global in situ data set (NOMAD) also confirmed the validity of PZ06 in reproducing Kd. PZ06 provides an alternative and improvement to the simpler models (e.g., Gordon, 1989; and Kirk, 1991) and an operational ocean color algorithm, while the latter two kinds of models are valid to limited sky and water conditions. PZ06 can be applied to study Kd from satellite remotely sensed images and seems to improve Kd derivation over current operational ocean color algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.