Abstract

Although in conventional models of cortical processing, object recognition and spatial properties are processed separately in ventral and dorsal cortical visual pathways respectively, some recent studies have shown that representations associated with both objects' identity (of shape) and space are present in both visual pathways. However, it is still unclear whether the presence of identity and spatial properties in both pathways have functional roles. In our study, we have tried to answer this question through computational modeling. Our simulation results show that both a model ventral and dorsal pathway, separately trained to do object and spatial recognition, respectively, each actively retained information about both identity and space. In addition, we show that these networks retained different amounts and kinds of identity and spatial information. As a result, our modeling suggests that two separate cortical visual pathways for identity and space (1) actively retain information about both identity and space (2) retain information about identity and space differently and (3) that this differently retained information about identity and space in the two pathways may be necessary to accurately and optimally recognize and localize objects. Further, modeling results suggests these findings are robust and do not strongly depend on the specific structures of the neural networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.