Abstract

Plant viral diseases have devastating effects on agricultural products worldwide. In this research, a delay differential equation model has been proposed for the transmission dynamics of plant viral disease using the vector-to-plant (primary) transmission and plant-to-plant (i.e. secondary) transmissions modeled via nonlinear (saturated) terms. Also, a time delay is considered in the model due to the incubation period of the plant. Feasibility and stability analyses of the equilibria of the model have been provided based on the basic reproduction numbers. Stability changes occur through Hopf bifurcation in both the delayed and non-delayed systems. Sensitivity analysis shows the impact of a parameter on the infection. The mathematical analysis of the model and numerical examples suggested that the disease will occur if the incubation period of the plant is small. Viral disease of a plant can be controlled by maintaining the distance between plants, removing the infected plants, and increasing crop resistance towards the disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.