Abstract

Urban areas, with large and dense populations, offer conditions that favor the emergence and spread of certain infectious diseases. One common feature of urban populations is the existence of large socioeconomic inequalities which are often mirrored by disparities in access to healthcare. Recent empirical evidence suggests that higher levels of socioeconomic inequalities are associated with worsened public health outcomes, including higher rates of sexually transmitted diseases (STD's) and lower life expectancy. However, the reasons for these associations are still speculative. Here we formulate a mathematical model to study the effect of healthcare disparities on the spread of an infectious disease that does not confer lasting immunity, such as is true of certain STD's. Using a simple epidemic model of a population divided into two groups that differ in their recovery rates due to different levels of access to healthcare, we find that both the basic reproductive number (R0) of the disease and its endemic prevalence are increasing functions of the disparity between the two groups, in agreement with empirical evidence. Unexpectedly, this can be true even when the fraction of the population with better access to healthcare is increased if this is offset by reduced access within the disadvantaged group. Extending our model to more than two groups with different levels of access to healthcare, we find that increasing the variance of recovery rates among groups, while keeping the mean recovery rate constant, also increases R0 and disease prevalence. In addition, we show that these conclusions are sensitive to how we quantify the inequalities in our model, underscoring the importance of basing analyses on appropriate measures of inequalities. These insights shed light on the possible impact that increasing levels of inequalities in healthcare access can have on epidemic outcomes, while offering plausible explanations for the observed empirical patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.