Abstract

Anthrax, caused by the bacterium Bacillus anthracis, is a zoonotic disease that persists throughout much of the world in livestock, wildlife, and secondarily infects humans. This is true across much of Central Asia, and particularly the Steppe region, including Kazakhstan. This study employed the Genetic Algorithm for Rule-set Prediction (GARP) to model the current and future geographic distribution of Bacillus anthracis in Kazakhstan based on the A2 and B2 IPCC SRES climate change scenarios using a 5-variable data set at 55 km2 and 8 km2 and a 6-variable BioClim data set at 8 km2. Future models suggest large areas predicted under current conditions may be reduced by 2050 with the A2 model predicting ∼14–16% loss across the three spatial resolutions. There was greater variability in the B2 models across scenarios predicting ∼15% loss at 55 km2, ∼34% loss at 8 km2, and ∼30% loss with the BioClim variables. Only very small areas of habitat expansion into new areas were predicted by either A2 or B2 in any models. Greater areas of habitat loss are predicted in the southern regions of Kazakhstan by A2 and B2 models, while moderate habitat loss is also predicted in the northern regions by either B2 model at 8 km2. Anthrax disease control relies mainly on livestock vaccination and proper carcass disposal, both of which require adequate surveillance. In many situations, including that of Kazakhstan, vaccine resources are limited, and understanding the geographic distribution of the organism, in tandem with current data on livestock population dynamics, can aid in properly allocating doses. While speculative, contemplating future changes in livestock distributions and B. anthracis spore promoting environments can be useful for establishing future surveillance priorities. This study may also have broader applications to global public health surveillance relating to other diseases in addition to B. anthracis.

Highlights

  • Bacillus anthracis is a spore-forming bacterium that is endemic to specific soil environments and the causative organism for anthrax, an infectious disease primarily found in herbivorous wildlife and livestock species, and secondarily in humans [1]

  • The accuracy metrics for the current scenarios confirms that Genetic Algorithm for Rule-set Prediction (GARP) successfully predicted actual outbreak locations withheld from the model-building process

  • An evaluation of individual test locations that were omitted in any of the current modeling scenarios shows that at least some of those are in areas unlikely to support B. anthracis in soils anyway based on the low frequency of such cases in a rather extensive time series of anthrax outbreaks

Read more

Summary

Introduction

Bacillus anthracis is a spore-forming bacterium that is endemic to specific soil environments and the causative organism for anthrax, an infectious disease primarily found in herbivorous wildlife and livestock species, and secondarily in humans [1]. Limited data are available to define the geographic extent of environmental variables that support long-term B. anthracis spore survival, but current literature suggests that B. anthracis likely replicates in the animal host and can survive for long periods in specific soil environments [2,3,4,5]. It has been determined that human anthrax cases in Kazakhstan are primarily caused by exposure to infected animals – usually cattle, sheep, horses, or goats [11]. One such study [12] examined factors that regulated domestic livestock numbers over the past century in Kazakhstan and determined that the timing and amount of precipitation are the most crucial factors

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.