Abstract

A model was developed which describes simultaneous reaction and internal diffusion for kinetically controlled, immobilized α-chymotrypsin-catalyzed, oligopeptide synthesis in acetonitrile medium. The model combines the equations that describe the intrinsic kinetics of four different reactions and the physical characteristics of three different support materials, as determined experimentally, to predict the apparent initial activity and nucleophile selectivity of the immobilized biocatalyst. The model is able to predict reasonably well the experimentally observed initial rate and nucleophile selectivity vs. enzyme loading profiles. The reduction in observed initial rate with enzyme loading when fast reactions are carried out with α-chymotrypsin immobilized on celite, and the larger influence of mass transfer limitations on the initial reaction rates than on nucleophile selectivities are correctly predicted by the numerical calculations. The model is general in terms of its application to other systems — enzymes, reactions, support materials and/or kinetic schemes — as long as the intrinsic kinetics and the characteristics of the enzyme and support material are known.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.