Abstract

This paper proposes a model for predicting the longitudinal profiles of streamwise velocities in an open channel with a model patch of vegetation. The governing equation was derived from the momentum equation and flow continuity equation. The model can estimate the longitudinal profiles of velocities both inside and outside a vegetation patch. Laboratory experiments indicate that the longitudinal profiles of velocities inside a patch and in the adjacent bare channel have the same adjustment distance in the longitudinal direction, but the profiles have different trends because the vegetation drag drives the flow from the patch to the adjacent bare channel. The model considers different dimensionless parameters in two flow adjustment regions upstream of and inside the patch. Sixteen sets of experimental data from different sources are used to verify the model. The model is capable of modeling the longitudinal profiles of velocities inside and outside patches of cylinders or cylinder-like plants. Compared to a previous model, the current model improves the modeling accuracy of longitudinal profiles of velocities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.