Abstract

A mass-balance model of calcite precipitation was developed to investigate the interactions of the varied processes governing the generation and fate of calcite in lakes. The model was used in conjunction with data to assess the evolution and impact of calcite precipitation for calcareous, ultraoligotrophic Torch Lake, Michigan (USA). This lake is an ideal setting for implementation of a baseline modeling study of calcite precipitation where the physical drivers could be evaluated without being dominated, as in many systems, by biological processes. The model provides a representation of calcite precipitation with particulate surface area changing over time, and demonstrates that it is possible for the change in water clarity to be explained by calcite precipitation employing standard optical models. Using the mass balance model to quantify the roles of the various chemical, biological and physical processes interacting in the lake's epilimnion, it was shown that the seasonal temperature rise and air–water CO 2 exchange drive calcite precipitation much more than primary production for this ultraoligotrophic system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.