Abstract

Affective computing has proven to be a viable field of research comprised of a large number of multidisciplinary researchers, resulting in work that is widely published. The majority of this work consists of emotion recognition technology, computational modeling of causal factors of emotion and emotion expression in virtual characters and robots. A smaller part is concerned with modeling the effects of emotion on cognition and behavior, formal modeling of cognitive appraisal theory and models of emergent emotions. Part of the motivation for affective computing as a field is to better understand emotion through computational modeling. In psychology, a critical and neglected aspect of having emotions is the experience of emotion: what does the content of an emotional episode look like, how does this content change over time, and when do we call the episode emotional. Few modeling efforts in affective computing have these topics as a primary focus. The launch of a journal on synthetic emotions should motivate research initiatives in this direction, and this research should have a measurable impact on emotion research in psychology. In this article, I show that a good way to do so is to investigate the psychological core of what an emotion is: an experience. I present ideas on how computational modeling of emotion can help to better understand the experience of motion, and provide evidence that several computational models of emotion already address the issue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.