Abstract

Continuous chips from experimental orthogonal cutting of materials with a heterogeneous microstructure such as 1045 steel are better represented by finite element (FE) models that incorporate material microstructure into the model. A macroscale FE model that incorporated the material microstructure into the model was developed. This approach was found to be more accurate in reflecting the chip formation process than conventional homogeneous models. The heterogenous model showed a rippled chip free surface and defects on the machined surface. The plastic strain was much larger from the heterogeneous FE model versus the homogeneous model due to strain localization during chip formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.