Abstract
The tube-to-tubesheet joint strength is measured in terms of residual contact pressure between the tube’s outer surface and tubesheet hole surfaces. The joint integrity is affected by several design parameters, including the type of tube and tubesheet materials, the level of expansion, and the initial radial clearance between the tube and tubesheet. In the present work, an axisymmetric finite element model based on the sleeve diameter and rigid roller concepts is developed. The model has been used to evaluate the combined effects of clearance, wall reduction level, and strain hardening of tube and tubesheet materials on the interfacial pressure between tube and tubesheet. The finite element results show that the initial clearance effect is dependent on the strain hardening capability of the tube material. For low strain hardening tube materials, the interfacial pressure remains almost constant well above the Tubular Exchanger Manufacturing Association maximum radial over tolerance of 0.0254mm(0.001in.). These results are validated by the experimental data developed during the research program. As expected, a drastic reduction in joint strength is observed at high values of radial clearances. The cutoff clearance (clearance at which the interfacial pressure starts to drop) is found to vary linearly with tube material hardening level. The residual pressure is found to increase slightly for moderate strain hardening tube materials but shows lower cutoff clearances. Wall reductions ranging from 1% to 12% were utilized in calculating the contact pressure as a function of radial clearance. The results show that for low strain hardening materials the optimum value of residual contact stress is obtained for the industry recommended value of 5%. Finally, because of the absence of plastic deformation in the ligament, the level of tubesheet material strain hardening does not have any noticeable effect on the joint strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.