Abstract

Global demand for charcoal is increasing mainly due to urban population in developing countries. More than half the global population now lives in cities, and urban-dwellers are restricted to charcoal use because of easiness of production, access, transport, and tradition. Increasing demand for charcoal, however, may lead to increasing impacts on forests, food and water resources, and may even create additional pressures on the climate system. Here we assess how different charcoal scenarios based on the Shared Socio-economic Pathways (SSP) relate to potential biomass supply. For this, we use the energy model TIMER to project the demand for fuelwood and charcoal for different socio-economic pathways for urban and rural populations, globally and for four tropical regions (Central America, South America, Africa and Indonesia). Second, we assess whether the biomass demands for each scenario can be met with current and projected forest biomass estimated with remote sensing and modeled Net Primary Productivity (NPP) using a Dynamic Global Vegetation Model (LPJ-GUESS). Currently one third of residential energy use is based on traditional bioenergy, including charcoal. Globally, biomass needs by urban households by 2100 under the most sustainable scenario, SSP1, are of 14.4 mi ton biomass for charcoal plus 17.1 mi ton biomass for fuelwood (31.5 mi ton biomass in total). Under SSP3, the least sustainable scenario, we project a need of 205 mi tons biomass for charcoal plus 243.8 mi ton biomass for fuelwood by 2100 (total of 450 mi ton biomass). Africa and South America contribute the most for this biomass demand, however, all areas are able to meet the demand. We find that the future of the charcoal sector is not dire. Charcoal represents a small fraction of the energy requirements, but its biomass demands are disproportionate and in some regions require a large fraction of forest. This could be because of large growing populations moving to urban areas, conversion rates, production inefficiencies, and regions that despite available alternative energy sources still use a substantial amount of charcoal. We present a framework that combines Integrated Assessment Models and local conditions to assess whether a sustainable sector can be achieved.

Highlights

  • More than half of the global population lives in cities, leading to important consequences for energy consumption (Grubler et al, 2012)

  • Charcoal production is responsible for 7% tropical forest loss (Chidumayo and Gumbo, 2013), making it important to assess whether there is enough forest to sustain this production at local and global scales, if demand is to increase with further urbanization

  • Recent estimates suggest that 51% of charcoal production comes from Africa and 35% from South America, but not all the charcoal stays where it is produced and major exports of charcoal occur in Indonesia, Malaysia and China, while major imports occur in Europe, Korea and Japan (Hillring, 2006; http://www.trademap.org)

Read more

Summary

Introduction

More than half of the global population lives in cities, leading to important consequences for energy consumption (Grubler et al, 2012). Charcoal production is responsible for 7% tropical forest loss (Chidumayo and Gumbo, 2013), making it important to assess whether there is enough forest to sustain this production at local and global scales, if demand is to increase with further urbanization. Charcoal production may compete with the production of food, reduce water resources, and other services forests provide (Fisher et al, 2011; Chidumayo and Gumbo, 2013). Besides these negative effects, charcoal may be beneficial as its application to soils contributes to higher organic matter content and soil fertility (Glaser et al, 2002). Some researchers have indicated that charcoal could be a renewable energy source with a theoretical net carbon emission close to zero (Piketty, 2015) even becoming a sustainable sector given that good governance is put in place (Neufeldt et al, 2015)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.