Abstract

Contact angle hysteresis is an important phenomenon that occurs both in natural and industrial droplet spreading/sliding applications. As they slide, droplets adopt a different contact angle at the front and rear, the advancing and a receding contact angles, respectively. This work investigates the different stages involved in the motion of droplets down inclined surfaces in the lubrication approximation framework. A simplified hysteresis model is proposed, implemented, and tested. This model automatically locates the section of the contact line which is advancing and the section which is receding. This enables the application of different contact angles at the advancing and receding fronts and therefore takes into account contact angle hysteresis. For validation purposes, experiments of fluid droplet spreading/sliding on inclined surfaces have also been performed to measure the terminal sliding velocity. With the inclusion of contact angle hysteresis, simulation results are shown to be in much better agreement with the experimental ones. This paper also presents a simple model based on Newton’s second law which is shown to have reproduced remarkably well the steady and dynamic results if the shape of the droplets does not depart too much from a spherical cap configuration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.