Abstract

Many wireless devices in common use today are worn either on or in close proximity to the body. Among them are a growing number of wrist-mounted devices designed for applications such as activity or vital-signs monitoring, typically using Bluetooth technology to communicate with external devices. Here, we use a tissue-mimicking phantom material in conjunction with anechoic chamber and network analyzer testing to investigate how antenna propagation patterns in one such device are influenced by the electrical properties of the human wrist. A microstrip antenna module is mounted onto phantom material of various geometries, and the resulting voltage standing wave ratio (VSWR), input impedance, and azimuth radiation pattern are recorded in both free space and real-world environments. The results of this study demonstrate how the high permittivity values of human tissue (ε(r) ≈ 16) affect the design parameters of microstrip antennas. A simulation environment using Sonnet EM software was used to further analyze the high dielectric effects of biological tissue on RF propagation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.