Abstract

During primary HIV infection, the kinetics of plasma virus concentrations and CD4+ cell counts is very complex. Parametric and nonparametric models have been suggested for fitting repeated measurements of these markers. Alternatively, mechanistic approaches based on ordinary differential equations have also been proposed. These latter models are constructed according to biological knowledge and take into account the complex nonlinear interactions between viruses and cells. However, estimating the parameters of these models is difficult. A main difficulty in the context of primary HIV infection is that the date of infection is generally unknown. For some patients, the date of last negative HIV test is available in addition to the date of first positive HIV test (seroconverters). In this paper we propose a likelihood-based method for estimating the parameters of dynamical models using a population approach and taking into account the uncertainty of the infection date. We applied this method to a sample of 761 HIV-infected patients from the Concerted Action on SeroConversion to AIDS and Death in Europe (CASCADE).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.