Abstract

A novel model is presented for the estimation of natural CaO-based sorbents carbonation reactivity decay during Calcium Looping carbonation-calcination cycles. The model consists of a cyclic framework of two sub-models, the Overlapping Grain Model and the novel proposed modified Rate Theory for the Pore Size Distribution model. The model was implemented in gPROMS ModelBuilder® and parameter estimation was used for model validation using experimental data from three CaO-based sorbent precursors. The carbonation profile for the three sorbents was simulated with average deviations under 5%. The calcination sub-model predicted the evolution of total porous volume and total surface area for the calcination and sintering of dolomite, with an error of 3%. The cyclic framework successfully predicted the carbonation behavior of dolomite for 20 carbonation-calcination cycles. The model can be used for other CaO-based sorbents and the flexible modular structure allows the integration of other modules or approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.